The Fermentation Analogy: A Point of View for Understanding the Intriguing Role of Proline Accumulation in Stressed Plants

نویسنده

  • Santiago Signorelli
چکیده

The accumulation of proline under environmental stress is a conserved response of plants. Five decades have passed since the first report of proline accumulation in plants (Barnnet and Naylor, 1966). Many hypotheses have been put forward regarding assignment of a function to proline. These proposed roles include antioxidant capacity, osmoprotection, signaling, developmental function, and contributing in redox and cellular homeostasis Among these, the osmotic adjustment, osmoprotectant, and antioxidant role have probably been the earliest and most widely accepted functions of proline. It is known that compatible osmolytes contribute in the retention of water, but also some of them force proteins to adopt a compactly folded structure, preventing the unfolding and reducing the exposed surface of the protein to damaging compounds (Attri et al., 2010). In case of proline this was demonstrated both in vitro and in single cell organisms. For example, it was observed that proline overproducing E. coli mutants had greater osmotolerance (Csonka et al., 1988) and also proline can inhibit protein aggregation in vivo (Ignatova and Gierasch, 2006). However, neither osmotic adjustment nor osmoprotection has been clearly confirmed in plants (Maggio et al., 2002; Kavi Kishor and Sreenivasulu, 2014). This is probably more complex in plants because plants have different osmoregulatory mechanisms. Controversy is present regarding its proposed antioxidant role because recent evidence demonstrates that proline cannot scavenge singlet oxygen, superoxide, nitric oxide, peroxynitrite nor nitrogen dioxide (Signorelli et al., 2013, 2016). In view of the lack of activity in previously suggested roles it has recently been proposed that proline acts exclusively as a hydroxyl radical scavenger (Signorelli et al., 2014, 2015), but more evidence for the physiological importance of this role is needed. Recently, the availability of proline biosynthesis Arabidopsis knockout (KO) mutant plants has allowed researchers to provide direct evidence regarding the role of proline in plants. It was observed that one of these mutants (p5cs2 mutant) were embryo lethal (Szekely et al., 2008) and that proline is required for flower transition and for pollen development and transmission (Mattioli et al., 2009, 2012; Funck et al., 2012). Additionally, it has been shown that proline content in roots correlates with root development (Sharma et al., 2011; Biancucci et al., 2015). This evidence clearly demonstrates the involvement of proline in development. However, the purpose of the accumulation of large amounts of proline in leaves under stressful conditions remains unresolved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر تنش خشکی و مقادیر مختلف پتاسیم بر تجمع اسمولیت‌ها و کلروفیل دو گونه کلزا و خردل هندی

In order to assess the effect of drought stress and various levels of potassium on solutes accumulation and chlorophyll of canola and Indian mustard, a field experiment was conducted in a factorial design based on randomized complete block design with three replications including three irrigation regimes (I1=irrigation after 50% depletion of soil water(control),I2 =irrigation after 70% water de...

متن کامل

Proline accumulation and osmotic stress: an overview of P5CS gene in plants

Under osmotic stresses, proline accumulation is an important response of plants to these conditions. Proline is a compatible osmolyte which affects many cellular and molecular aspects of plant in both normal and stressful situations. Proline is shown to be involved in plant development in normal condition and in conferring resistance to plant under biotic and abiotic stresses. Therefore, many s...

متن کامل

Effect of silicon application on wheat seedlings growth under water-deficit stress induced by polyethylene glycol

Silicon is known to ameliorate the deleterious effects of drought on plant growth. We evaluated growth of wheat (Triticum aestivum L. CV. Chamran) under Water-Deficit Stress Induced by Polyethylene Glycol as affected by Si application. In this article, the effects of Si (as potassium silicate) on some parameters related to growth, chlorophyll concentration relative water content (RWC), electrol...

متن کامل

Influence of Si Supplementation on Growth and Some Physiological and Biochemical Parameters in Salt-Stressed Tobacco (Nicotiana rustica L.) Plants

Tobacco is a salt-sensitive glycophyte crop species. In this work effect of silicone (Si) supplementation (1 mM as Na2SiO3) was studied in Nicotiana rustica L. cv. Basmas grown hydroponically in growth chamber under control, low (25 mM) and high (75 mM) NaCl concentration for two weeks. Dry matter production of leaves was depressed by salinity level as low as 25 mM and higher salt concentration...

متن کامل

Water relations, pigment stabilization, photosynthetic abilities and growth improvement in salt stressed rice plants treated with exogenous potassium nitrate application

Potassium is a major nutrient which may play an important role in many processes such as ion homeostasis in plant cells and osmotic adjustment of guard cells during stomatal opening and closing. Pathumthani 1 (PT1) rice has been reported as being a salt sensitive cultivar and has been selected as a model plant in this study to investigate the possibility of improving the osmotic potential, pigm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016